Trading Computation for Communication: Distributed Stochastic Dual Coordinate Ascent

نویسنده

  • Tianbao Yang
چکیده

We present and study a distributed optimization algorithm by employing a stochastic dual coordinate ascent method. Stochastic dual coordinate ascent methods enjoy strong theoretical guarantees and often have better performances than stochastic gradient descent methods in optimizing regularized loss minimization problems. It still lacks of efforts in studying them in a distributed framework. We make a progress along the line by presenting a distributed stochastic dual coordinate ascent algorithm in a star network, with an analysis of the tradeoff between computation and communication. We verify our analysis by experiments on real data sets. Moreover, we compare the proposed algorithm with distributed stochastic gradient descent methods and distributed alternating direction methods of multipliers for optimizing SVMs in the same distributed framework, and observe competitive performances.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supplementary Materials: Trading Computation for Communication: Distributed Stochastic Dual Coordinate Ascent

For the proof of Theorem 1, we first prove the following Lemma. Lemma 1. Assume that φ * i (z) is γ-strongly convex function (where γ can be zero). Then for any t > 0 and s ∈ [0, 1], we have

متن کامل

Distributed Asynchronous Dual-Free Stochastic Dual Coordinate Ascent

In this paper, we propose a new Distributed Asynchronous Dual-Free Coordinate Ascent method (dis-dfSDCA), and prove that it has linear convergence rate in convex case. Stochastic Dual Coordinate Ascent (SDCA) is a popular method in solving regularized convex loss minimization problems. Dual-Free Stochastic Dual Coordinate Ascent (dfSDCA) method is a variation of SDCA, and can be applied to a mo...

متن کامل

Network Constrained Distributed Dual Coordinate Ascent for Machine Learning

With explosion of data size and limited storage space at a single location, data are often distributed at different locations. We thus face the challenge of performing largescale machine learning from these distributed data through communication networks. In this paper, we study how the network communication constraints will impact the convergence speed of distributed machine learning optimizat...

متن کامل

Communication-Efficient Distributed Dual Coordinate Ascent

Communication remains the most significant bottleneck in the performance of distributed optimization algorithms for large-scale machine learning. In this paper, we propose a communication-efficient framework, COCOA, that uses local computation in a primal-dual setting to dramatically reduce the amount of necessary communication. We provide a strong convergence rate analysis for this class of al...

متن کامل

Analysis of Distributed Stochastic Dual Coordinate Ascent

In (Yang, 2013), the author presented distributed stochastic dual coordinate ascent (DisDCA) algorithms for solving large-scale regularized loss minimization. Extraordinary performances have been observed and reported for the well-motivated updates, as referred to the practical updates, compared to the naive updates. However, no serious analysis has been provided to understand the updates and t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013